Designing zonal organization into tissue-engineered cartilage.
نویسندگان
چکیده
Cartilage tissue engineering strategies generally result in homogeneous tissue structures with little resemblance to the native zonal organization of articular cartilage. The objective of this study was to use bilayered photopolymerized hydrogels to organize zone-specific chondrocytes in a stratified framework and study the effects of this three-dimensional coculture system on the properties of the engineered tissue. Superficial and deep zone chondrocytes from bovine articular cartilage were photoencapsulated in separate hydrogels as well as in adjacent layers of a bilayered hydrogel. Histology, mechanical testing, and biochemical analysis was performed after culturing in vitro. To evaluate the influence of coculture on tissue properties, the layers were separated and compared to constructs containing only superficial or deep cells. In the bilayered constructs, deep cells produced more collagen and proteoglycan than superficial cells, resulting in cartilage tissue with stratified, heterogeneous properties. Deep cells cocultured with superficial cells in the bilayered system demonstrated reduced proliferation and increased matrix synthesis compared to deep cells cultured alone. The bilayered constructs demonstrated greater shear and compressive strength than homogenous cell constructs. This study demonstrated that interactions between zone-specific chondrocytes affect the biological and mechanical properties of engineered cartilage. Strategies aimed to structurally organize zone-specific cells and encourage heterotypic cell interactions may contribute to improved functional properties of engineered cartilage.
منابع مشابه
Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage
Tissue architecture is intimately linked with its functions, and loss of tissue organization is often associated with pathologies. The intricate depth-dependent extracellular matrix (ECM) arrangement in articular cartilage is critical to its biomechanical functions. In this study, we developed a Raman spectroscopic imaging approach to gain new insight into the depth-dependent arrangement of nat...
متن کاملMorphological MRI and T2 mapping of cartilage repair tissue after mosaicplasty with tissue-engineered cartilage in a pig model
The aim of this study was to evaluate the efficacy of mosaicplasty with tissue-engineered cartilage for the treatment of osteochondral defects in a pig model with advanced MR technique. Eight adolescent miniature pigs were used. The right knee underwent mosaicplasty with tissue-engineered cartilage for treatment of focal osteochondral defects, while the left knee was repaired via single mosaicp...
متن کاملInterstitial Flow Produces a Superficial Zone-Like Layer in Tissue Engineered Cartilage
INTRODUCTION: Surgical repair of articular cartilage typically yields fibrocartilage that lacks the stratified ECM architecture of native cartilage and does not integrate with the surrounding hyaline cartilage. Because of these limitations, there has been considerable interest in cartilage tissue engineering and that led to the development of various bioreactor systems to grow functional engine...
متن کاملBi-zonal cartilaginous tissues engineered in a rotary cell culture system.
In this study, we aimed at validating a rotary cell culture system (RCCS) bioreactor with medium recirculation and external oxygenation, for cartilage tissue engineering. Primary bovine and human culture-expanded chondrocytes were seeded into non-woven meshes of esterified hyaluronan (HYAFF-11), and the resulting constructs were cultured statically or in the RCCS, in the presence of insulin and...
متن کاملStrategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair
Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2007